SLR2000: current status & issues being worked Jan McGarry & Tom Zagwodzki

Khz ranging session
ILRS Workshop at Eastbourne
October 2005

Progress since Workshop in June 2004 (glacial – but in a positive direction)

- Point-ahead of transmit using Risley Prisms: checked out and working.
- ➤ Transceiver transformations documented (McGarry & Degnan, independently), verified, and parameters determined.
- ➤ New SigmaSpace Beam Expander and Iris are in the system, aligned and in the software. Both still need final checkout in the system.
- ➤ New photon-counting optical alignment technique using stars appears to do a better job of distributing light over the quadrants uniformly. Very important for closed-loop tracking.
- > Replaced original detector with spare appeared to have degraded.
- > Started automated closed-loop tracking some success some problems.

Work on SLR2000 was extremely slow March – September 2005 due to work on Transponder experiments

Currently ongoing SLR2000 work

- SigmaSpace is working on design to optically shutter the detector.
- ➤ We are working on technique to change laser PRF to prevent collisions between outgoing & incoming pulses. Currently we are just blanking electronically.
- ➤ We plan to purchase a higher QE 4QMCP detector from Hamamatsu.
- ➤ We have analyzed the closed-loop tracking data and need to make some adjustments in the system.

Future work

➤ SLR2000 has been selected as primary ground station for LRO laser uplink. Will require the purchase of a higher energy 28Hz laser.

Issues related to khz ranging

Closed loop tracking: sometime it works and sometimes it doesn't!

- It is very important to get a uniform distribution of background noise across the four detectors and it is not easy. Probably need to use a software calibration of the quadrant levels to provide final correction.
- Signal must be centered on quadrants when telescope is directly pointed at target. Degnan conjectures that point-ahead may be causing backscattered light to favor one quadrant over others. This does appear to be happening in some of the passes, but not in others. ???
- We have a serious backscatter problem in SLR2000 which is causing problems in a lot of areas, but especially in degradation of the detector and most likely also in the closed-loop tracking. We must drastically reduce the backscatter effects through optical blanking and by changing the laser PRF.

Still not able to range to LAGEOS

- Returns from all satellites are generally weaker than theoretical.
- Until new beam expander, system wasn't properly focused, beam divergence was unknown and not easily changed. This should improve performance.

First closed-loop correction here

BEC pass taken on 3/14/2005 (GMT 3/15/2005 03:47).

Problem with s/w recording of rangebias cause jumps in OMC plot.

Blanking causes periodic no-noise segments.

This pass was run with closed-loop activated and working. Point-ahead version of software.

First closed-loop correction here

STELLA pass taken on 3/15/2005 (GMT 3/15/2005 21:46).

Problem with s/w recording of rangebias cause jumps in OMC plot.

Blanking still there – but daylight fills in gaps.

This pass was run with closed-loop activated. Point-ahead version of software.

Potential new S2K detector:

Four quadrant MCP.

QE >= 30%.

Price: ~ \$35k.

TECHNICAL INFORMATION

SPECIFICATION SHEET

Microchannel Plate Photomultiplier Tube

R4110U-74-M004B

GENERAL

	Parameter		Ratings	Units
	Spectral Response	<u> </u>	280 to 720	nm
	Wavelength of M	faximum Response	480 to 550	nm
Γ	Input Window	Material	Borosilicate Glass	-
		Thickness	4.77	mm
Г	Photocathode	Material	GaAsP	-
		Minimum Effective Diameter	25	mm
	Microchannel Plate (MCP) Construction		2 Stages (Filmless)	-
	Anode	Pattern.	Matrix 4 ch	-
		Size (each ch)	8.5 % 8.5	mm
	Mechanical Size (H x W x L)		69 mm x 63 mm x 34.4 mm	-

RATINGS

Parameters	Ratings	Maximum Ratings	Units	
Input Gate Pulse	Voltage	-200	-230	V
(Photocathode to MCPin)	Width	100		115
Supply Voltage (MCPin to An	2200	-	V	
Photocathode Current	-	10	nА	
Average Current (Each Anode	-	200	nА	
Ambient Temperature	-	-50 to +50	°C	

CHARACTERISTICS

	Par	ameters	Min.	Typ.	Max.	Units	
Photocathode	Lumin	ous Sensitivity	400	700	-	uA/lm	
Sensitivity	Quanti	m Efficiency at Peak	30	40	-	%	
DC Current Am	DC Current Amplification at -2200 V			3 x 10 ⁵	-	-	
Anode		Counts at -2200 V (25 °C) ned all anodes)	•	,	30000	5-1	
Voltage Divider	Voltage Divider Current at -2200 V			,	100	uΑ	
Photocathode Un	Photocathode Uniformity		50	,	-	%	
MCP Gain Uniformity			50	,		%	
Ti D		Rise Time	•	200	300		
Time Response (Gate on Opera	ating \	Fall Time		300	-	ps	
(Canc on Open	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T.T.S. (FWHM)	-	100	-		
Cross - Talk		-	8	-	%		

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office.

